Terahertz all-optical modulation in a silicon-polymer hybrid system.

نویسندگان

  • Michael Hochberg
  • Tom Baehr-Jones
  • Guangxi Wang
  • Michael Shearn
  • Katherine Harvard
  • Jingdong Luo
  • Baoquan Chen
  • Zhengwei Shi
  • Rhys Lawson
  • Phil Sullivan
  • Alex K Y Jen
  • Larry Dalton
  • Axel Scherer
چکیده

Although gigahertz-scale free-carrier modulators have been demonstrated in silicon, intensity modulators operating at terahertz speeds have not been reported because of silicon's weak ultrafast nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer waveguide device, based on the all-optical Kerr effect-the ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz. We showed experimentally that the mechanism of this modulation is ultrafast through spectral measurements, and that intensity modulation at frequencies in excess of 1 THz can be obtained. By integrating optical polymers through evanescent coupling to silicon waveguides, we greatly increase the effective nonlinearity of the waveguide, allowing operation at continuous-wave power levels compatible with telecommunication systems. These devices are a first step in the development of large-scale integrated ultrafast optical logic in silicon, and are two orders of magnitude faster than previously reported silicon devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active graphene–silicon hybrid diode for terahertz waves

Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demo...

متن کامل

All-optical THz wave switching based on CH3NH3PbI3 perovskites

Hybrid structures of silicon with organic-inorganic perovskites are proposed for optically controllable switching of terahertz (THz) waves over a broad spectral range from 0.2 to 2THz. A 532-nm external laser was utilized to generate photoexcited free carriers at the devices and consequentially to control the terahertz amplitude modulation, obtaining a depth of up to 68% at a laser irradiance o...

متن کامل

A Compact Hybrid Silicon/Electro-Optic Polymer Resonant Cavity Modulator Design

The design and simulation of a novel resonant cavity optical modulator incorporating a hybrid silicon/electro-optic polymer slot waveguide structure is presented in this work. The device utilizes the electro-optic polymer in the cavity region to provide an active material for modulation and includes distributed Bragg reflectors in single mode silicon waveguide regions at each end of the cavity ...

متن کامل

Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components.

We report optical modulation of continuous terahertz (THz) wave in the frequency range of 570-600 GHz using photo-induced reconfigurable patterns on a silicon wafer. The patterns were implemented using programmable illumination from a commercially-available digital light processing (DLP) projector. A modulation depth of 20 dB at 585 GHz has been demonstrated. Modulation speed measurement shows ...

متن کامل

Photo-designed terahertz devices

Technologies are being developed to manipulate electromagnetic waves using artificially structured materials such as photonic crystals and metamaterials, with the goal of creating primary optical devices. For example, artificial metallic periodic structures show potential for the construction of devices operating in the terahertz frequency regime. Here we demonstrate the fabrication of photo-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 2006